
Journal of Statistical Physics, Vol. 55, Nos. 3/4, 1989 

Stochastically Perturbed Landau-Ginzburg Equations 
Roberto Benzi, l Giovanni Jona-Lasinio, 2 and Alfonso Sutera 3 

Received August 2, 1988; revision received December 2, 1988 

We analyze several aspects of a reaction-diffusion equation in two space dimen- 
sions with cubic nonlinearity, stochastically perturbed by white noise in time 
and in space. This equation needs renormalization, and physical implications of 
this circumstance arc discussed. In particular, for sufficiently large coupling con- 
stant the effective potential becomes a double well and rare transitions from one 
minimum to the other are possible. These, however, are revealed only by large- 
scale fluctuations which exhibit a bimodal distribution. Fluctuations below a 
critical scale have unimodal distribution and do not "see" the double well. This 
phenomenon is connected with the singular character of local fluctuations in 
two or more space dimensions. The theoretical results are confirmed by numeri- 
cal simulations. The possible physical relevance of our results is illustrated in 
connection with the analysis o,f certain observations of atmospheric fields. 

KEY WORDS:  Stochastic P.D.E.; renormalization; large (small) scale 
fluctuations; atmospheric bimodality. 

1. JINTRODUCTION 

Landau-Ginzburg (LG) equations ~see (2.1)] are widely used to model a 
variety of different physical situations. Although they were originally 
motivated by the study of the order parameter near the critical point in the 
theory of superconductivity, m their use has been extended to describe 
B6nard cells near the transition to the convection mode, (2~ the effect of 
orbital forcing on the earth's climates, (3) the nonlinear optical bistability in 
laser:s, t4) crystallization phenomena, ~5) etc. Generally speaking, LG equa- 
tions are phenomenological equations representing an approximate macro- 
scopic description of the physical phenomenon under study. Their justifica- 
tion at a deeper level would require a microscopic analysis, which is usually 
a very difficult task. Therefore, what one very often does is to simulate or 
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model some of the neglected effects connected with the microscopic nature 
of the system in terms of appropriate perturbations to the original macro- 
scopic equation. An important class of such perturbations is represented by 
external noise, which according to different circumstances may describe 
part of the neglected complicated structure of the system or external distur- 
bances or both. The choice of the external noise is not a trivial point. White 
noise is very often a candidate and the rationale behind this choice is just 
our lack of a sufficiently detailed knowledge of the physical situation. In 
fact the basic feature of a white noise is that it gives equal weight to all 
scales of time and space. Although this may be rather unphysical in certain 
cases, it seems reasonable to expect that when a white noise of small 
amplitude is added to our deterministic equation the effect of the small 
scales should not be overwhelming in determining the macroscopic 
behavior of the system. In other words, using a terminology borrowed from 
quantum field theory, our equations should exhibit a property of 
"ultraviolet stability." Now it is a fact that even a simple scalar LG equa- 
tion does not have this property when the dimension of space is larger 
than 1. This poses a methodological problem. A possible reaction is to 
abandon our model momentarily and try to obtain a more accurate 
description of the physics involved. But another possible attitude (perhaps 
not equally satisfactory in the long term, but immediately more construc- 
tive) consists in asking the following question: is it possible to construct a 
"minimal" modification of our equation that exhibits the property of 
ultraviolet stability? This is the kind of question with which quantum field 
theorists have been struggling for several decades and for which the theory 
of renormalization in its different versions has been developed. Therefore a 
possible reformulation of the previous question is: is it possible to renor- 
realize our LG equation? The answer is affirmative and in fact at the level 
of perturbation theory this problem was discussed long ago in connection 
with dynamical critical phenomena. (6) Recently in space dimension d=  2 
progress has been made by giving a completely nonperturbative treatment 
of the problem (v) including a study of the behavior of the equation when 
the noise becomes small. (8~ This treatment is based on a combination of 
stochastic calculus with the methods of constructive field theory. 

The main purpose of this paper is to discuss qualitatively the basic 
nonperturbative features of the model in order to clarify its possible uses in 
interpreting phenomenological situations. In particular, we shall analyze 
two aspects. First we consider the mechanism which allows a bifurcation 
from a one-equilibrium to a two-equilibrium regime with emphasis on the 
differences with respect to the deterministic case. Then we analyze the 
behavior of fluctuations at different scales. This is quite remarkable, as the 
two-equilibrium regime is revealed only by the large-scale fluctuations. 
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Only these scales exhibit a bimodal distribution, while below a critical scale 
the probability distribution of a suitable averaged field is always unimodal. 
This aspect, which is here examined in detail for the first time, is strictly 
connected with the singular character of fluctuations over small scales. We 
remark that the behavior we have just described is absent in one space 
dimension, as we discuss in the Appendix. 

We then discuss computer simulations of the nonperturbative features 
of the model. An extensive numerical study is presented which, in our 
opinion, beautifully illustrates the theoretical analysis. Finally, the possible 
p]hysical relevance of the above scenario is illustrated by considering an 
important problem in atmospheric physics. 

At a more general level we would like to summarize the content of this 
paper by stressing the following points. 

1. We start from a model, a reaction-diffusion equation, which is 
believed to be relevant in the study of various hydrodynamical problems. 

2. We perturb it with a white noise in all variables to obtain a 
scheme applicable to many situations where perturbations also on scales 
much smaller than the macroscopic ones of interest are active. For 
example, in the problem of atmospheric physics considered at the end, 
stochastic perturbations exist down to the molecular level, i.e., the scale of 
the mean free path. 

3. If the scheme is not stable, we introduce a minimal modification 
(renormalization) which ensures "ultraviolet" stability. In the present 
context this means stability under perturbations on scales smaller than the 
scales that the equation is supposed to describe. 

We believe that the above points may have a general methodological 
significance because they actually introduce a criterion for generating 
acceptable perturbed hydrodynamic equations. The situation is reminiscent 
of quantum field theory and elementary particle physics, where models are 
otIen adopted with a view toward their renormalizability. Of course, if our 
attitude is correct, the renormalized stochastically perturbed equations 
should be obtained from the microscopic dynamics. This is a formidable 
challenge. However, recent studies of the hydrodynamic limit of certain 
microscopic models suggest that the problem we raise may be within the 
reach of modern techniques of nonequilibrium statistical mechanics/14) 

2. R E N O R M A L I Z A T I O N  OF L A N D A U - G I N Z B U R G  E Q U A T I O N  

The prototype of the LG equation is 

Ot~o= v aq~-m~o- V'(~o) (2.1) 

822/55/3-4-3 
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where V '=  6V/6q~ is the "potential" and we shall assume hereafter that V 
is a polynomial in ~o; v and m are constants; and ~0 is a scalar function 
which depends on (x, t) e f2 x [0, T], and f2 is a domain in R u. We are 
interested in studying the effect of stochastic perturbations on (2.1). More 
precisely, we add to the rhs a term e ~/2 dW(x ,  t)/dt, obtaining the stochastic 
partial differential equation 

c3t~ = v A~o -mq~  - V'(q~) + ~1/2 dW/d t  (2.2) 

The white noise is defined by 

Fdw(x, t )  dW(x ' ,  c) 7 = a(x-  x') a(t-  c) E 
[_ dt dt' 

Let Z, be a solution of the linear stochastic partial differential equation 

OtZ, = v 3 Z ,  - m Z ,  + e 1/2 dW/d t  (2.4) 

Z, is given by 

T 

, , c < r  (2.5) 
~0 o-Q 

where Zot is a solution of the homogeneous equation and G(x, x', t, t') is 
the fundamental solution of the operator ( 9 , - v  J + m), i.e., 

( 9 , -  v A + m) G(x, x', t, t') = 6(x  - x ' )  6(t - t') 
(2.6) 

G ( x , x ' , t , t ' ) = O  for t < t '  

Choosing appropriate boundary conditions in t'2, we can solve (2.6) by 
expanding G in eigenfunctions of the Laplace operator q~k defined by 

A~pk = --2kq~k (2.7) 

If f2 is a square, then r are Fourier modes. We easily obtain 

G(x, y , t , s ) = O ( t - s )  ~ ' e  -~m+"xkl~' s)qg~(x)cpk(y ) (2.8) 
k 

where 0 is the Heaviside function. Analogously, we can expand the noise in 
terms of <ok" 

W(x,  t) = ~" W~(t) ~o~(x) (2.9) 
k 
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where Wk are a sequence of independent Wiener processes. From (2.5) and 
(2.8) it follows that 

f E(Z2(x))dx=~oZ2t(x)dxq-~k m~v~k [1-e-2t(m+~'~k) ] (2.10) 

This series diverges for d~> 2 and the divergence is logarithmic for d =  2. 
Let us now write (2.2) as an integral equation using the Gaussian 
process Z~: 

~o,(x) = Z , ( x )  - G(x,  x ' ,  t, r )  v'(~o,,(x')) dx'  d r  (2.11) 

Due to (2.10), any nonlinear term in V'(~0) is divergent and is not a 
stochastic variable. Therefore (2.11) is meaningless. In order to illustrate 
how to give a meaning to our equation, we specialize V'(q~): V'(~0) = g~0 3, 
where g is a constant. We first introduce a cutoff noise by restricting the 
sum in (2.9) to k<~A. We then try to modify ~o 3 in a way that it remains 
a good stochastic variable, in the limit A --. Qc. A standard way to do this 
is to replace ~o 3 with its Wick product: 

q~3 ~ ~03 _ 3E(Z~= ~)q~ ~ :~03: (2.12) 

This procedure, inspired by experience in quantum field theory, has been 
rigorously shown to be appropriate for a slightly different equation. ~7) It 
can be shown that :q)3: is a good stochastic variable since all its moments 
exist. Hence our modified equation reads 

( p , = Z t - g f ~ f  G : q ~ , : d x ' d t '  (2.13) 

or in differential form 

Otq~ = v Jq) - mqo - g(p3 + 3gE(Z~= ~)qo + e 1/2 d W  .... 
dt 

(2.14) 

In the next section we shall explain how the methods of quantum field 
theory allow us to give a meaning to the evolution described by (2.13). 

3,. R E L A T I O N  W I T H  Q U A N T U M  FIELD T H E O R Y  

Equations like (2.13) or (2.14) have been studied for the first time in 
connection with the so-called stochastic quantization of field theories. In 
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this section we will summarize the main insights which have been obtained 
in such a study. One has to realize immediately that even after renor- 
malization, an equation like (2.13) or (2.14) cannot be taken in a "strong" 
sense, that is, as a relationship satisfied by an appropriate process that we 
call its solution. This is due to the explicit infinity introduced by the Wick 
product. The way out is provided by the notion of weak solution in a 
probabilistic sense. This means the following. A stochastic process r is 
called a weak solution of (2.13) if the process 2 , (x )  defined by 

T 

(3.1) 

has the same probability distribution as Z t solution of (2.4). In other 
words, while it is not possible to find a functional ~ot(Z) which satisfies 
(2.13), taking (2.13) as a definition of 2 t ,  we can find a ~0, that gives, via 
(3.1), a Gaussian process in distribution identical with Z~. 

Then we describe how to construct (o,. One starts from (2.13) with a 
cutoff noise W,A. In this case (2.13) has a strong solution which defines a 
Markovian semigroup via the Girsanov formula~7): 

E~oo~ f((o,A ) = E~OA f (Z ,A  e "'~) (3.2) 

where 

g (:Z3A:,dWsA) dslfzZ3sA'lt 2 (3.3) 

where (..., ...) is the scalar product corresponding to the space integration, 
I]..-]1 is the induced norm, and f is any bounded functional of q~,A- Using 
the methods of constructive field theory, it was shown in ref. 7 that for the 
case of an equation slightly different from (2.13) it is meaningful to take the 
limit A ~ ~ in (3.2). Since the choice of the equation discussed in ref. 7 
was dictated mainly by technical simplicity, we shall assume that the 
conclusions extend also to (2.13). That is, we shall assume that ~0, can be 
defined for A ~ ~ by 

E,pof(rp, ) = E~of(Z,e" ,  ) (3:4) 

The definition of the weak solution implies that expectation values 
calculated using (0,A, for large A, approximate well the expectation values 
calculated with q~,. 

In ref. 7 it was also proved that q~, is ergodic and mixing and that its 
stationary measure is the usual Euclidean quantum :~04: model. 
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The Wick product changes the original single minimum potential into 
a double-well potential. Consequently, the equilibrium measure of (2.13) 
in the infinite-volume limit exhibits a phase transition when g reaches a 
critical value. (9) To study whether there is a trace of this phenomenon in 
our finite-volume equations (2.13) or (2.14), let us change the Wick 
product (2.12) through the following formal manipulation: 

0~ 2 m~o + gq~3 _ 3gE(Z~= ~)q~ = mq~ + g fp3  _ 3gE(Z,= ~)q~ 

- 3g[E(Z2,= ~ ) -  E(Z~'2= ~) ]  ~0 (3.5) 

where Z~' is the process whose variance is given by 

fo e ~  1 _2t(~+ v;k,] 
E(ZT~(x))dx=-2 e + V 2 ~ [ 1 - e  

If ~ > m ,  the coefficient of the last term is obviously negative and for suf- 
ficiently large g can dominate over the mass term m. In this case everything 
goes as if we had started from a potential 

with 

V (  (p ) = l g ( p  4 _ l p (p2  (3.6) 

If we require now 

V'((pc.) = 2p (3.9) 

2 p = ~  (3.10) 

which is a transcendental equation for c~, we may intepret the term 
-3gE(ZT[  ~) appearing in (3.5) as a renormalization of fluctuations near 
each of the new minima. Therefore, if g is large enough so that (3.10) has 
a solution ~>>m, the Wick product becomes relevant and produces an 
effective double-well potential of finite depth. It is interesting to remark 
that the bifurcation at m = 0 of the deterministic equation now can occur 
at m > 0. In finite volume, jumps are possible between the two minima and 
should appear in the solutions of our stochastically perturbed LG equation. 

~2 
P = 3g[E(Z2= o~ ) -- E(Zt  = ~ )] - rn (3.7) 

Notice that p is independent of A for A --, 0% as follows from a very simple 
calculation. This is a double-well potential with two minima 4-q~c given by 

(Pc. = (p/g)1~2 (3.8) 

Near each minimum we may define a mass equal to 
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4. FLUCTUATIONS 

In this section we discuss in some detail the nature of fluctuations of 
the field when the noise intensity goes to zero. We first show that there is 
a regime in which the renormalization term is irrelevant. Qualitatively this 
phenomenon can be understood in the following way. If we consider the 
cutoff equation, this has strong solutions and one can apply to it the usual 
theory of small, random perturbations. For  e (the noise intensity) suf- 
ficiently small the renormalization term is of the order of e In A and can be 
consistently disregarded. The probability that a trajectory of the cutoff field 
be close to a preassigned function ft(x) in the same cutoff space is of the 
order of 

P a(sup lq)~- f~l < 6)~-exp ~ Ir~ ft) ) (4.1) 

with 

_ l i t  2 
I r a ( f ) - 2  0 II(Otf--vAf+mf+gf3)pAI [ (4.2) 

where PA is the projection onto the subspace k<~A. Therefore it is 
exponentially small unless ft coincides with a solution of the deterministic 
part of (2.13) projected onto the subspace k ~< A. It is clear, however, that 
due to the term ~ In A the e --* 0 limit and the A ~ oo limit cannot be inter- 
changed. To reach conclusions about the field ~ot after removal of the 
cutoff, we have to analyze the problem further. First of all we observe that 
the trajectories of the field (p, live in a space of distributions insofar as the 
x dependence is concerned. The time dependence is continuous. This means 
that it is meaningful to speak of trajectories only for quantities smeared in 
space, e.g., 

q~e(x) = f g(x-- x') q~,(x')dx' (4.3) 

where g is an appropriate test function. If R0 is the diameter of the region 
over which g(x) ~ O, (4.3) is a field with an effective cutoff of the order of 
Ro  ~. To simplify the discussion, we then analyze in the e--, 0 limit the 
behavior of q~7, i.e., the projection of our distribution-valued process on the 
first n g Ro 1 vectors of the orthonormal basis, q)7 is a process continuous 
in all variables t and x. One can now expect that the probability of large 
deviations for q)~' must be close to the probability of large deviations for 
~o~, i.e., the projection of the process solution of the equation with cutoff 
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noise on the first n eigenvectors of the basis, at least if n ~ A. That this type 
of guess is correct has been proven recently ~8) for an equation similar to 
(2.13) and we assume again that the result can be extended to our case. 
The conclusion of this part of the discussion is therefore that provided we 
average our field ~o, over a finite scale, it will tend to be close when 

~ 0 to the average of the solutions of an unrenormalized deterministic 
equation. The dependence of the probability of large deviations on the scale 
considered is contained in the formula 

where 

P ( sup lq ) , - f , I  <6)~exp(I,~f)) (4.4) 
x ,  t 

I . ( f ) =  Inf IrA(f  ) (4.5) 
f:fn = f  

where Ira is given by (4.2) and fn  is the projection of f on the first n 
vectors of the basis. 

In the previous discussion the coupling constant g has been kept fixed 
while e ~ 0. In real life, however, e is finite and ge may not be too small 
that equation (3.10) of the previous section has a nontrivial solution. In 
this situation the previous theory of large deviations has to be supplemen- 
ted by additional considerations. Suppose in fact that we keep ge >> 1 and 
constant so that also ~ is constant when g vanishes. Then it is clear that we 
cannot take the limit g--+ 0, as the drift explodes. Furthermore, both the 
location of the wells (3.8) and their depth vanish with 8. Therefore, if we 
want to see the double well, we have to keep g small but finite. In spite of 
this, we believe that qualitatively the main features of the usual analysis of 
a process in a double well based on large-deviation theory applies to our 
case as well. Thus, we expect the equilibrium distribution to be bimodal. 
However, there are some aspects of our situation which have to be taken 
into account. First of all, as we already remarked, because of the distribu- 
tion character of the field realizations, fluctuations depend strongly on the 
scale considered. In fact, fluctuations on a scale Ro around one of the 
minima of the potential are easily seen to be of the order of 

( R o l )  2 
In - -  (4.6) 

On the other hand, ~p2 is of the order 

e In --  (4.7) 
m 
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Therefore, when 
( R o l )  2 
- -  > ( 4 . 8 )  

m 

we expect the bimodal structure of the equilibrium probability density dis- 
tribution to be strongly modified and eventually canceled. Thus, bimodality 
will be a feature of large-scale fluctuations. It is interesting to remark that 
it is enough to smear the field over large distances with respect to only one 
coordinate to obtain a weakly fluctuating and therefore bimodal quantity. 

5. N U M E R I C A L  E X P E R I M E N T S  

In this section we present some numerical simulations in order to 
illustrate the previous theoretical discussion. 

To simulate numerically (2.2), we use finite differences on a regular 
lattice of spacing a. Each node is identified by the indices j, k = 1,..., N and 
we chose aN= 1. Then (2.2) becomes 

d~oj, k= ~iD~pj, k--mcPj, k--gq~j3k dt+---~-dWj, k(t) (5.1) 

where 

D(pj ,  k = (Pj+ l , k"F  (Pj, k + l 4- (Pj-- l ,k 4- (Pj, k- -  t - - 4 @ j , k  

In (5.1), dWj, k/dt is a white noise and 

L J 

where E[. . . ]  stands as usual for averaging over the noise realizations. In 
all numerical simulations we used periodic boundary conditions and 
v=0.1,  5=0.01, and the time step At small enough to ensure numerical 
stability, i.e., ez l t~a  2. The computational cost for N = 1 6  is about 
0.0027 sec for time step on a IBM 3090/VF. 

We first consider the linear case of Eq. (5.1): 

) a dZj, k= -~TDZj, k -mZj ,  k -  dt+ dWj, k(t) (5.2) 

Let G(m, a) be the mean variance of Zj, k, i.e., the quantity (1/N 2) Zj, k Z~,k 
at equilibrium, It is quite simple to show that 

8a 2 

G(m, a)= ~ 2S'm (5.3) p.q t , v, q, p) 
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Table I. The Behavior of the Roots of the Transcendental Equation (5.5) 
As a Function of g 

g 130 150 200 

~1 1.93 4.00 8.54 
~2 1.07 0.57 0.33 

where 

S(m,  v, q, p )  = m a  2 + 4v - 2v c o s ( 2 ~ q / N )  - 2v cos(27rp/N) 

and 1 ~< q, p ~< N. Here G(m,  a)  is used to obtain the renormalized version 
of (.5.1) 

(v ~03) ~ 1/2 
dqgj, k = ~ D(pj, k + #qPj, k - -  g j,k dt +--a dWj'k(t) (5.4) 

where # - -  - m  + 3gG(m,  a). The discretized version of (3.10) is 

c~ = - 2 m  + 6g[  G(m,  a)  - G(c~, a)]  (5.5) 

As in the continuum case, (5.5) is a transcendental equation for the ~. We 
have solved (5.5) numerically for different values of a and g by employing 
a Newton method. It turns out that for a~< 1/16 and g~> 130, (5.5) has two 
solutions cq and c%. For  larger values of g, 71 >> c~2 (see Table 1). We have 
also studied the a dependence of cq at g = 140, as shown in Table II. For  
sufficiently small value of a, ~1 tends to be constant, as expected. 

We want to study the statistical properties of ~0j, k for different values 
of g keeping a constant. In particular, we will present some numerical 
results for a = 1/16. One may argue that this value of a is not small enough 
to guarantee that the statistical properties of (Pj.k are independent of a (see 
again Table II). However, according to Sections 2 and 3, once we use the 
re, normalized equation, it can be expected that the a dependence of all the 
relevant properties is rather weak. 

Table II. The Behavior of the Largest Root of (5.5) and the Value 
of the N e w  Equilibrium after  Renormalization As a Function of N=l /a  

N 16 32 64 128 256 

51 3.06 2.45 2.23 2.15 2.13 
~c 0.1046 0.0933 0.0891 0.0876 0.0869 
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To discuss the scale dependence of the statistical properties of q)j,k, we 
consider the quantities 

1 
q~(M) - M2 ~ ~ozk (5.6) 

j ,k= l,,..,M 

For M =  N, q~(M) corresponds to the spatial average of q)z~, while for 
M =  1, ~(1) is (P1,1, i.e., the value of the field q~ in one point. Due to the 
periodic boundary conditions it is not important where the square of side 
M is centered. We will denote by P(M, g) the stationary probability dis- 
tribution of $(M) for a given value of g and a = 1/16. For g sufficiently 
large, namely for g >~ 130 according to Table I, P(16, g) should be bimodal 
with maxima located near ~0c = -t-(O~l/g) 1/2. On the other hand, for a small 
value of g, P(16, g) should be unimodal. We can deduce P(M, g) starting 
from the time record of 0(M) obtained by direct numerical integration of 
(5.4). Deduction of the probability density distribution (pdd) from the data 
is a problem in itself and deserves some discussion. Let Oi(M) be the i 
iterate of O(M), i.e., $(M) at time i At. Because of obvious limitations, we 
will have a finite, say T, sequence of Oi(M). We want to estimate the pdd 
of 0i(M), i=  1, 2,..., T. This problem has a long tradition and recent 
developments in the theory of nonparametric density estimation suggest the 
use of a generalization of the concept of histogram as a potential estimator. 
In this paper we employ a quartic kernel estimator, i.e., an estimate of the 
true pdd at the datum O~(M) given by 

P[Oj(M)] = N  e ~ 1-- 
n = l  "=  

(5.7) 

where Ne is a normalization constant, h is the mesh interval centered 
around 0;(M) over which we estimate the probability density distribution, 
and Q is the total number of points for which we estimate the pdd. In 
virtue of (5.7), the estimate depends on the window size h and its choice is 
not suggested by the data. To establish the optimal choice of the window, 
we can proceed as follows. We note that for large h the estimate obtained 
by using (5.7) is always a unimodal pdd, while for h very small the estimate 
will be always a multimodal pdd. Thus, starting from large h, we can 
decrease the window size to the value, say h = he, for which an additional 
mode appears. Now the problem is turned into establishing the statistical 
significance of this bimodal pdd. For this purpose we can proceed as 
follows. Because the statistical significance will depend on the number of 
independent observations, we must give a criterion to decide how many 
independent observations are contained in our sample {0i(M)}. In this 
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paper we use the simple rule of taking as independent observations a 
datum every Td, where Td is the decorrelation time of our solution. 

Let Nind be the number of independent observations contained in our 
record; we can prepare synthetic data sets, each of length Nind, by sampling 
a unimodal pdd, for example, the pdd of our original data set obtained 
with a window size slightly greater than the above-defined he. Then, we 
estimate the pdd's of each synthetic data set by using a window size h--hc 
and determine the percentage of cases which a bimodal pdd occurs. This 
percentage will give us an estimate of the probability that sampling Nind 
observations from a unimodal pdd, our estimated pdd has a bimodal struc- 
ture due to the arbitrariness of the window size. If this probability is large, 
then we reject our hypothesis of bimodality. If it is small, we reject the null 
hypothesis that the true distribution is unimodal. So we have established a 
confidence level for the modal structure of the true pdd. 

We first consider the case of g small, namely g = 10. We recall that 
small and large values of g means that (5.5) has no solution or two 
solutions. 

We estimate P(16, 10) using (5.7) with T=10,000, Td=10,  and 
Q--41. For h = 0.09 a bimodal pdd is obtained. In accordance with the 
above discussion, the statistical significance is assessed by constructing 100 
sample sets, each of length Nind = 1000, by sampling from a unimodal pdd. 
The unimodal pdd is chosen to be the estimated pdd of the data {0i(M)} 
which is obtained by setting h = 0.12 in (5.7). We estimated the pdd's for 
each of these 100 sample sets using h=0.09 and we found that in 50% of 
the cases the estimates were bimodal pdd's. Hence, we conclude that the 
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Fig.  1. P r o b a b i l i t y  dens i ty  d i s t r i b u t i o n  P(16 ,  g )  for  the  n u m e r i c a l  s i m u l a t i o n  o f  (5.1) a t  

" s m a l l "  g = 10. The  p r o b a b i l i t y  dens i ty  d i s t r i b u t i o n s  p l o t t e d  in this a n d  the  fo l lowing  f igures  
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Fig. 2. 
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P robab i l i t y  densi ty  d i s t r ibu t ion  P(16, g)  for the numer ica l  s imula t ion  of (5.1) a t  

" large" g = 140. 

appearance of the new mode is artificially introduced by the smallness of 
the window size and we accept the hypothesis that the true pdd has 
unimodal structure. 

The same procedure has been used to estimate P(16, 140). In this case 
at h=0 .12  a bimodal pdd is observed and the estimate is significant at 
96%. Figure 1 and 2 show P(16, 10) and P(16, 140), respectively. The 
numerical solution of (5.5) for g = 140 is ~ = 3.066, which corresponds to 
~0 c = _+0.104. This value compares well with the maximum of P(16, 140). 

As previously mentioned, we are interested in studying P(M, 140) as 
a function of M. We already know that for decreasing values of M the 
variance of the field O(M) increases. For  small values of M the fluctuations 
are large enough to mask the double-well potential. In this case P(M, 140) 
becomes unimodal. 

In Fig. 3 we show P(M, 140), M = 1, 2, 3, 4, 8, 10, 12, obtained by the 
numerical integration and using the same statistical techniques already 
described. We see that for M < 4  the probability distribution becomes 
unimodal. 

6. A POSSIBLE APPLICATION TO A T M O S P H E R I C  PHYSICS 

A remarkable feature of the present model is the absence of a bimodal 
distribution at very small scale. This property may have relevance for some 
geophysical problems, among which we report a case which we have 
recently discussed in other publications. (lw~2) In these papers the aim was 
to establish whether the atmosphere possesses more than a weather regime 
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Fig. 3. Probabi l i ty  densi ty  d is t r ibut ions  P(M, 140) for the numer ica l  s imula t ion  of (5.1) for 
(a) M = 1, 2, 3, 4, (b) M = 8, 10, 12. The  numer ica l  labels on the curves refer to the different 
values of M. 

in accordance with theories of large-scale motion. (13) To this purpose in 
ref 10 it was proposed to investigate the following indicator. Let Z(2, 0, t) 
be the 500-mb geopotential height during the Northern Hemisphere winter 
(artificially defined as the period from the 1 December to the 28 March), 
where 2, 0 are respectively the latitude and the longitude of a point and t 
the time. This field was considered as a stochastic variable. We define the 
latitudinal averaged field as 

2(0, t)= f]i z(A o, t) d,~ 
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where [21, "~2"] is a relatively small interval with respect to the planetary 
scale. Let us consider the Fourier transform along the 0 direction: 

Z(O, t) = y '  A ( t ) k  eik~ 
k 

The interesting indicators are 

FL( t ) = [k~'= 2 A k( t )zJ 1/2 

and 

F s ( t  ) = Ak( t )  2 
L k = 7  

(6.1) 

(6.2) 
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Probability density distribution of (a) F L [defined by (6.1)] and (b) Fs [defined by 
(6.2)] for the atmospheric data discussed in the text, 
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These two variables represent the planetary-wave (large-scale) and the 
short-wave (small-scale) behavior of Z. Alternatively, FL and F s can be 
considered as the large-scale and the small-scale averages of the two-dimen- 
sional stochastic field Z(2, 0, t). In Figs. 4a and 4b we show the probability 
density estimates of FL and Fs induced by a set of data for ten winters. It 
appears that FL possesses a bimodal density distribution, while F s does 
not. Now, if the fitting processes of Z(2, 0, t) (i.e., a stochastic variable 
having the same density distribution of Fr and Fs) is controlled by an 
equation similar to the Landau-Ginzburg stochastic equation, arguments 
such as the one proposed in the previous sections hold and the peculiar 
dependence of the bimodality on the averaging scale may have its explana- 
tion in the renormalization process. Of course, the observed behavior of FL 
and Fs may have a different explanation; we feel, however, that the 
mechanism discussed in this paper provides a very illuminating guideline. 

APPENDIX. THE LG EQUATION IN ONE DIMENSION 

In one dimension renormalization of the LG equation is not necessary 
because E(Z~(x))< ov for all t. In order to emphasize the difference 
between one and two dimensions, let us consider also in d =  1 the renor- 
malized equation 

0,~o = v c~2~0 -mq~ - g :~03: + e 1/2 dW/dt (A.1) 

where :~03: is defined in (2.12). For e=0.01, v=0.01, g =  140, and m=0.1  
the bare potential of (A.1) is a double well with two minima at _+0.1. 
However, in this case we do not expect, due to the finiteness of local 
fluctuations, that the effective potential will become a double well. This is 
confirmed by numerical integration of (A.I); see Fig. 5. 
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Fig. 5. Probability density distribution obtained by numerically integrating (A.1) and 
averaging on the whole one-dimensional domain. The bare potential is a double well with two 
minima at +0.1. 
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